
3: Pattern matching,
Recursion, and the ALU

Recap and Agenda
Last week we looked at

- Software:
- Haskell functions, types, names and expression

- Hardware:
- How memory is created using integrated circuits

Today, we’ll:

- Software:
- Look more at Haskell functions, pattern match on them and look at recursion

- Hardware:
- Create an arithmetic unit using integrated circuit (our last lesson using breadboards!)

To start let’s code together
Go to repl.it and search for Haskell

We’re going to code today’s examples together

Starting with Haskell
Remember, everything in haskell has a type, which describes the data.

Type signatures tell you what type something is. They look like this:

age :: Int. This reads: age has type int.

You can use :t in GHCi (the black screen) to get the type signature of anything

Functions have type signatures too. These signatures have -> to represent input
and output.

Let’s look at the type signature of take using :t take

In these type signatures, the last type is the output, and everything before it is
input.

:t all the things!
Let’s look at the type of head, a function that gives back the first element of a list.

head :: [a] -> a

We notice something strange about its signature, namely what is [a]??

That is a polymorphic type meaning a can polymorphise into any type it so
pleases. a can be of type Char, Int, another list, and so on.

More on type signatures and functions

It’s great to know the input(s) to a function, but how does the computer know what
to do with these inputs to make an output?

Pattern matching!

According to http://learnyouahaskell.com: “Pattern matching consists of
specifying patterns to which some data should conform (and then checking to
see if it does) and deconstructing the data according to those patterns.”

In other words, pattern matching is looking for certain inputs, and applying certain
changes to those inputs to make them outputs (if it’s possible to do so).

http://learnyouahaskell.com

Let’s recreate head
To understand pattern matching, we’ll write the pattern matching for head.

head takes the first index of a list and returns it to you. To do this, we’ll have to pull the
first index out of the list and return it.

On lists: we know lists need one thing, the []. Data is added to a [] using :, the cons
operator. As such these two lists represent the same:

[1, 2, 3] = 1:2:3:[]

If we wanted to pull out the first index from this list of characters we’d have to assign a
variable to the first index (and a variable for everything that comes after) and return the
first index. Let’s do it!

Now you try to create tail’
Which is a function that takes in a list and returns everything but the head!

Typeclasses
Let’s continue our exploration by examining the type of elem which returns the
data at a certain index in a list.

:t elem

What’s new here?

Everything before => is called a class constraint. When we write Eq a => …, we
can use any type, provided it belongs to the Eq typeclass. This typeclass let’s us
check whether two values are equal using == and /=

This is how elem works, it goes through each index of a list, checks if each value
is the same as the value you want to see is inside the list, and tells you with a Bool
(true or false) if its there.

Recursion

Let’s compute the length of a list! Luckily, there’s a function for that: length. Try
out :t length.

Great, but we still don't know how length computes.

Let’s implement our own version, using pattern matching. We’ll need both a
pattern for the empty list and the nonempty list.

Challenger approaches!
Try implementing 3 of the list processing functions from this list:

building21.ca/list-examples

If you feel comfortable with your solution, come present it to the class!

Hardware: the ALU

http://www.youtube.com/watch?v=1I5ZMmrOfnA

Constructing our own half adder
Our last activity with the breadboard will
be creating our own half adder!

Remember: the smiling spaceship is the
XOR gate!

Recap and agenda
This week, we talked about:

- Pattern matching
- Recursion
- The ALU.

Next week we're going to talk about:

- What happens when you turn on a computer?
- Operating systems
- Your first introduction to Linux, woohoo!!

