1 - Binary and logic

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Inside the computer: power supply unit

Electricity

Electronic switches: transistors

Logic gates

Who's this? The power supply unit!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○

Electricity & our first circuit

- Current flows clockwise in this diagram.
- The battery generates direct current.
- We associate a positive voltage with true and the negative voltage with false: binary!
- We can build this circuit on a *breadboard*.

Keeping things aligned

- The (linear) voltage regulator lowers its input voltage to a fixed value.
- We use this to convert down from the 9 V battery to 5 V, which is closer to the range our other components are meant for.

A D F A 目 F A E F A E F A Q Q

Vive la resistance

A resistor *slows down* the current moving through it. We need this so that our light doesn't blow up!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

The light of my life

- ► *LED*s emit light when current passes through.
- ► LEDs have *polarity*: the direction they're facing in the circuit makes a difference! (In contrast, resistors do not have polarity.)
- The long leg is the *positive* terminal.

うして ふゆ く は く は く む く し く

A board for cutting bread? Not really.

And the holes on the left and right, called *rails*, are connected vertically.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Last but not least

- ► In its neutral state, the button allows current to flow top-down through it.
- Pushing down on the button causes electricity to flow across it.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Now let's build it!

Transistors: electronic switches

- ▶ When current is applied to the *base* of the transistor, current is allowed to flow from the *collector* to the *emitter*.
- Transistors are the basic building blocks of more complex circuits, such as CPUs!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Now let's use a transistor!

Replace the switch with a transistor, and use the *base* to control the LED.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Two transistors in series makes an AND gate

Try putting the LED both on the collector side and emitter side of the transistor pair.

Two transistors in parallel makes an OR gate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Inside the computer: power supply unit

Electricity

Electronic switches: transistors

Logic gates

Homework

Check out https://tryhaskell.org/!

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

▶ Try getting to lesson 4.