
Integrated Circuits, Memory,
Haskell

Recap & Agenda
Last week, we:

- Played with transistor circuits on our breadboards (made AND & OR gates)
- Learned about power supply and electricity

Today we will:

- Bump up a level of abstraction with our breadboards with integrated circuits
- Continue looking at hardware: memory/RAM
- Do some real haskell coding B)

First challenge!
Last week we made the AND & OR
gates using transistors.

Now let’s build a NOT gate on your
breadboard!

*we’re going to need this gate for a later
activity so please preserve it!*

Integrated Circuits (ICs)
Programming using transistors is
complicated! Let’s bump up a level of
abstraction to an integrated circuit (IC).
ICs abstracts all the mess of wires and
transistors into one small chip.

Integrated circuits were first successfully
demonstrated by Jack Kilby in 1958. ICs
revolutionized electronics, as ICs are
more cost effective and more reliable
than discrete components like
transistors.

Jack Kilby, auctioning off his first IC (1958) in New
York, expected to sell for $2 million.

Now let’s use one!
This is a “pinout diagram” for the chips we’ll be

using.

The top of the IC has a little divot to help you orient

them.

Make sure the VCC is connected to the positive and

the GND is connected to the negative.

Test out the AND & OR ICs on your breadboard by

observing their output using an LED! Don’t try

switches because we don’t know how they work.

But what does this have to do with memory?
Take it away, Carrie-Anne!

http://www.youtube.com/watch?v=fpnE6UAfbtU&t=89

Remember all that?
Sure hope so! Let’s build our own memory using all the circuits we’ve already
made so far!

So how does your computer use AND OR latches?
Let’s watch the rest of the CC video!

http://www.youtube.com/watch?v=fpnE6UAfbtU&t=189

Moving to software: Haskell!!
Let’s try Haskell, the programming language
we’re going to use to generate our website!
Woohoo!

Haskell is a high level purely functional
programing language. This means it only uses
functions.

Functions are like a machine that performs some
operation on the input to compute an output.

Ex. 1 + 1 = 2. (+) is a function, that takes 2 inputs
and computes its sum. 1 + 1 will always equal 2.

Haskell 101: definitions
Before we dive into Haskell, let’s look at its syntax and its meaning.

There are only 2 things you can write in Haskell: definitions and expressions.

Definitions give a name to an expression.

Ex: age = 25

Here, we’re making our own definition for the word age which is 25. Age and 25
now mean the same thing.

Expressions are like phrases that use math. They can contain numbers, variables,
functions. Ex. 3 + 5 `div` 4 (this is valid haskell code and would output 2)

Types types types

age :: Int

Name we’re defining

“Has type”

Type of the expression

Everything in haskell has a type, which we write alongside a definition, ex:

age :: Int

age = 25

 This is called a type signature, as it tells us the type of age.

Since everything has a type, there are a lot of types in Haskell. What are some
types you remember from tryhaskell.org?

[Lists]
One really important type is the list type.

Lists are denoted by square brackets and the values in the lists are separated by
commas. They look like this:

participants :: [String]

participants = [“Ani”, “Tareq”, “Kelly”, “Caiti”, “Callan”]

Lists can store several elements of the same type. Ex. this list can only have
strings, so no numbers or anything else.

Type Signatures of Functions
Like previously mentioned, everything has a type, including functions. Let’s look at
one now.

addThree :: Int -> Int -> Int -> Int

addThree x y z = x + y + z

Here is a function that takes 3 numbers and adds them together. In order to use
this function, we must respect two things: the number of inputs and the types of
each input.

In a type signature, the rightmost type always is the output. Arrows separate each
input, so everything that comes before is an input.

Finally! We’re ready to CODE!
With your computers, let’s all head to code.world to start!!

http://code.world

