
5 - Datatypes and
higher-order functions

Agenda & recap
Last week, we:

- Studied the boot sequence of a computer.
- Saw what an OS is.
- Used a Linux virtual machine.

Today, we’re going to write a lot of code:

- Higher-order functions: functions that transform functions!
- Datatypes
- Generalizing higher-order functions: the Functor typeclass

Remember long division? Me neither.
Previously, we looked at the div function, which divides numbers (obviously). But
how does it work? Let’s code up our own div together as a refresher.

Higher order functions
One of the most powerful things about Haskell is you can have functions as input
or as output of another function, called higher order functions (hof)

The first hof we’re going to look at is map.

Let’s look at its type signature by typing :t map in GHCi. What does it read?
(Remember, we can forget Traversable t and just think of t as meaning “list”.)

map takes in two inputs - a function, and a list. It then applies this function to every
element in the list.

Now that we know the type signature and how it works, let’s try and code our own
map!

Let’s jump next to the filter function
filter is another important hof. Let’s see its type signature using :t filter.

This function filters a list according to the function (a -> Bool). This function tests
each element of a list (hence the bool function). Elements that return false are
removed from the list.

For example, we could filter a strings to select only the characters that are
lowercase. That would use a function (String -> Bool). Ex.

filter (isLower) “DOEsNT MaKING vARIeD FUNCTIONS AmAZe YOU”

What would this return?

Now let’s code up filter in pairs!

Nothing special about lists
Haskell lets us define functions, which are a way of transforming things. But we
can also define datatypes, which are a way of representing information.

For instance, we might want to represent a person. Let’s define a datatype Person
that contains information that is related to a person.

data Person = MakePerson String Int deriving Show

The String and Int here refer to the person’s name and age.

deriving Show is necessary so that GHCi knows how to show you the values of
the type we just invented.

Making people is easy!
In our datatype, we know what the String and Int do but what does MakePerson
do?

data Person = MakePerson String Int deriving Show

Let’s ask :t! Write your current code and open GHCi, running :t on MakePerson.
What does the type signature tell us?

We can think of MakePerson as a function that takes a name and an age and
makes a person. But we call this a constructor, not a function because it is the
only way we can construct a value of type Person!

Enter the matrix
Using the new datatype we just created (Person), add yourself to your code.

To do this, we need to use MakePerson and fill in the necessary information. So if
I wanted to make myself, I would write:

MakePerson “Eric” 23

Like pattern matching, we need to introduce the arguments to MakePerson they
way they are written when we defined Person. This means after using
MakePerson, we have to add our name as a string then our age as an Int. Doing it
in the opposite order would not compile.

Now we have this data, we need to bind it to something!
Ex: me = MakePerson “Eric” 23. Let’s compile this and ask GCHi who “me” is.

Now let’s write a function creates a child for a person.

child :: Person -> Person

It should suffix “Junior” to the parent’s name, and the new person should have age
zero. Let’s do this together.

We can pattern match on own datatypes the same way we did for earlier types like
lists! To do this, we need to introduce arguments that correspond to the
constructors.

The right-hand side is where we can build our new person, with a different name
and age.

Working with people is easy!

Happy birthday to you!
Let’s also make a function that makes people get older.

birthdayParty :: Person -> Person

This function takes a person, sees what their age is, and constructs a new person
with the same name, but whose age is increased by one. Let’s code these
together.

Higher-order people
Let’s combine our knowledge of datatypes and higher-order
functions! Code this up individually:

rename :: (String -> String) -> Person -> Person

which transforms a person’s name according to the given
function. Let’s make a function that adds “ the Great” to any
name.

makeGreat :: String -> String

Try this out as a test:

rename makeGreat me

Parent-child bonding is essential!
Let’s represent the fact that parents and children are related, by adjusting our
definition of Person:

data Person = MakePerson String Int Person (don’t write this yet)

Now each person also contains another person, which we’ll say is their parent. But
what if we don’t know who someone’s parent is? Who are the first people? Very
important questions.

We need a way of specifying that something is optional using Maybe.

Yes. No. Maybe. Can you repeat the question?
What is Maybe? Ask GHCi! Because Maybe isn’t a function and
instead a type (hence the uppercase M), we need to use :info
instead of :t. The command looks like this:

:info Maybe

GHCi just spat out a bunch of text, but let’s look at the first line:

data Maybe a = Nothing | Just a

The pipe | can be read as “or”, meaning a (which is polymorphic)
can either be Nothing or something (“Just a”, in other words Just
itself. This can help us prevent our code from crashing!

Maybe parents
If we have a value of type Maybe Int, then we might have an Int or we might not.
This is useful for representing optional information.

Notice that this is a polymorphic type: there is a type parameter a that can stand
for any type we want.

This type has two constructors, not just one!

Parents: now optional!
We can use Maybe when we add the parent field to our Person datatype. It's
syntax looks like this:

data Person = MakePerson String Int (Maybe Person) deriving Show

Now each person we create might have a parent. Let’s adjust our all our functions
from earlier that call MakePerson so it has the right number of inputs!

Let’s also make a function for constructing people with no parent:

person :: String -> Int -> Person

Family trees
Challenge: write a function that computes a person’s lineage:

lineage :: Person -> [String]

It should return the person’s name, followed by their parent’s name, and so on,
until we hit the ancestor that doesn’t have a parent.

Can't spell functor without fun!
Notice how Maybe wraps around a, which can be of any type. In what way is this
similar to List?

Both wrap around types that contain values of that type! These are called functors.
Jake what is a functor?

Yet another map
Remember map :: (a -> b) -> [a] -> [b]? This function applies the same function (a
-> b) to all values wrapped in the [] functor, but this won't work for types wrapped
in the Maybe functor.

It turns out we can code a similar function for Maybe!

omap :: (a -> b) -> Maybe a -> Maybe b

Try to implement it!

One map to rule them all!
Right now we have a map for the [] functor and Maybe functor, but what about
map for any kind of functor? Let’s write a generalized map, called fmap’!

fmap’ :: (a -> b) -> f a -> f b

Where f is any possible functor! Let’s implement this.

We did it!
Today we learned about:

- Higher order functions
- Datatypes
- And functors!

In 2 weeks from now, were jumping into web dev as we need to make those
websites! So we’ll look at:

- CSS and HTML

For homework, try codacademy’s HMTL tutorial.

Functors: a generalized map
Functors are all those type constructors that support the notion of applying a
function uniformly to the stuff inside.

For example, the [] (list) type constructor is a functor because we have the
function map :: (a -> b) -> [a] -> [b] that turns any ordinary function into a function
on lists.

Similarly, Maybe is a functor because we have omap :: (a -> b) -> Maybe a ->
Maybe b that turns any ordinary function into a function on Maybe.

